3.339 \(\int \frac{x^3 \tan ^{-1}(a x)^2}{(c+a^2 c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=305 \[ -\frac{2 i \sqrt{a^2 x^2+1} \text{PolyLog}\left (2,-\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{a^4 c \sqrt{a^2 c x^2+c}}+\frac{2 i \sqrt{a^2 x^2+1} \text{PolyLog}\left (2,\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{a^4 c \sqrt{a^2 c x^2+c}}+\frac{\sqrt{a^2 c x^2+c} \tan ^{-1}(a x)^2}{a^4 c^2}-\frac{2}{a^4 c \sqrt{a^2 c x^2+c}}+\frac{\tan ^{-1}(a x)^2}{a^4 c \sqrt{a^2 c x^2+c}}+\frac{4 i \sqrt{a^2 x^2+1} \tan ^{-1}\left (\frac{\sqrt{1+i a x}}{\sqrt{1-i a x}}\right ) \tan ^{-1}(a x)}{a^4 c \sqrt{a^2 c x^2+c}}-\frac{2 x \tan ^{-1}(a x)}{a^3 c \sqrt{a^2 c x^2+c}} \]

[Out]

-2/(a^4*c*Sqrt[c + a^2*c*x^2]) - (2*x*ArcTan[a*x])/(a^3*c*Sqrt[c + a^2*c*x^2]) + ArcTan[a*x]^2/(a^4*c*Sqrt[c +
 a^2*c*x^2]) + (Sqrt[c + a^2*c*x^2]*ArcTan[a*x]^2)/(a^4*c^2) + ((4*I)*Sqrt[1 + a^2*x^2]*ArcTan[a*x]*ArcTan[Sqr
t[1 + I*a*x]/Sqrt[1 - I*a*x]])/(a^4*c*Sqrt[c + a^2*c*x^2]) - ((2*I)*Sqrt[1 + a^2*x^2]*PolyLog[2, ((-I)*Sqrt[1
+ I*a*x])/Sqrt[1 - I*a*x]])/(a^4*c*Sqrt[c + a^2*c*x^2]) + ((2*I)*Sqrt[1 + a^2*x^2]*PolyLog[2, (I*Sqrt[1 + I*a*
x])/Sqrt[1 - I*a*x]])/(a^4*c*Sqrt[c + a^2*c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.396028, antiderivative size = 305, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {4964, 4930, 4890, 4886, 4894} \[ -\frac{2 i \sqrt{a^2 x^2+1} \text{PolyLog}\left (2,-\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{a^4 c \sqrt{a^2 c x^2+c}}+\frac{2 i \sqrt{a^2 x^2+1} \text{PolyLog}\left (2,\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{a^4 c \sqrt{a^2 c x^2+c}}+\frac{\sqrt{a^2 c x^2+c} \tan ^{-1}(a x)^2}{a^4 c^2}-\frac{2}{a^4 c \sqrt{a^2 c x^2+c}}+\frac{\tan ^{-1}(a x)^2}{a^4 c \sqrt{a^2 c x^2+c}}+\frac{4 i \sqrt{a^2 x^2+1} \tan ^{-1}\left (\frac{\sqrt{1+i a x}}{\sqrt{1-i a x}}\right ) \tan ^{-1}(a x)}{a^4 c \sqrt{a^2 c x^2+c}}-\frac{2 x \tan ^{-1}(a x)}{a^3 c \sqrt{a^2 c x^2+c}} \]

Antiderivative was successfully verified.

[In]

Int[(x^3*ArcTan[a*x]^2)/(c + a^2*c*x^2)^(3/2),x]

[Out]

-2/(a^4*c*Sqrt[c + a^2*c*x^2]) - (2*x*ArcTan[a*x])/(a^3*c*Sqrt[c + a^2*c*x^2]) + ArcTan[a*x]^2/(a^4*c*Sqrt[c +
 a^2*c*x^2]) + (Sqrt[c + a^2*c*x^2]*ArcTan[a*x]^2)/(a^4*c^2) + ((4*I)*Sqrt[1 + a^2*x^2]*ArcTan[a*x]*ArcTan[Sqr
t[1 + I*a*x]/Sqrt[1 - I*a*x]])/(a^4*c*Sqrt[c + a^2*c*x^2]) - ((2*I)*Sqrt[1 + a^2*x^2]*PolyLog[2, ((-I)*Sqrt[1
+ I*a*x])/Sqrt[1 - I*a*x]])/(a^4*c*Sqrt[c + a^2*c*x^2]) + ((2*I)*Sqrt[1 + a^2*x^2]*PolyLog[2, (I*Sqrt[1 + I*a*
x])/Sqrt[1 - I*a*x]])/(a^4*c*Sqrt[c + a^2*c*x^2])

Rule 4964

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[1/e, Int[
x^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p, x], x] - Dist[d/e, Int[x^(m - 2)*(d + e*x^2)^q*(a + b*Arc
Tan[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IntegersQ[p, 2*q] && LtQ[q, -1] && IGtQ[m
, 1] && NeQ[p, -1]

Rule 4930

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[((d + e*x^2)^
(q + 1)*(a + b*ArcTan[c*x])^p)/(2*e*(q + 1)), x] - Dist[(b*p)/(2*c*(q + 1)), Int[(d + e*x^2)^q*(a + b*ArcTan[c
*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && NeQ[q, -1]

Rule 4890

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + c^2*x^2]/Sq
rt[d + e*x^2], Int[(a + b*ArcTan[c*x])^p/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*
d] && IGtQ[p, 0] &&  !GtQ[d, 0]

Rule 4886

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(-2*I*(a + b*ArcTan[c*x])*
ArcTan[Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]])/(c*Sqrt[d]), x] + (Simp[(I*b*PolyLog[2, -((I*Sqrt[1 + I*c*x])/Sqrt[1
- I*c*x])])/(c*Sqrt[d]), x] - Simp[(I*b*PolyLog[2, (I*Sqrt[1 + I*c*x])/Sqrt[1 - I*c*x]])/(c*Sqrt[d]), x]) /; F
reeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[d, 0]

Rule 4894

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[b/(c*d*Sqrt[d + e*x^2]),
 x] + Simp[(x*(a + b*ArcTan[c*x]))/(d*Sqrt[d + e*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d]

Rubi steps

\begin{align*} \int \frac{x^3 \tan ^{-1}(a x)^2}{\left (c+a^2 c x^2\right )^{3/2}} \, dx &=-\frac{\int \frac{x \tan ^{-1}(a x)^2}{\left (c+a^2 c x^2\right )^{3/2}} \, dx}{a^2}+\frac{\int \frac{x \tan ^{-1}(a x)^2}{\sqrt{c+a^2 c x^2}} \, dx}{a^2 c}\\ &=\frac{\tan ^{-1}(a x)^2}{a^4 c \sqrt{c+a^2 c x^2}}+\frac{\sqrt{c+a^2 c x^2} \tan ^{-1}(a x)^2}{a^4 c^2}-\frac{2 \int \frac{\tan ^{-1}(a x)}{\left (c+a^2 c x^2\right )^{3/2}} \, dx}{a^3}-\frac{2 \int \frac{\tan ^{-1}(a x)}{\sqrt{c+a^2 c x^2}} \, dx}{a^3 c}\\ &=-\frac{2}{a^4 c \sqrt{c+a^2 c x^2}}-\frac{2 x \tan ^{-1}(a x)}{a^3 c \sqrt{c+a^2 c x^2}}+\frac{\tan ^{-1}(a x)^2}{a^4 c \sqrt{c+a^2 c x^2}}+\frac{\sqrt{c+a^2 c x^2} \tan ^{-1}(a x)^2}{a^4 c^2}-\frac{\left (2 \sqrt{1+a^2 x^2}\right ) \int \frac{\tan ^{-1}(a x)}{\sqrt{1+a^2 x^2}} \, dx}{a^3 c \sqrt{c+a^2 c x^2}}\\ &=-\frac{2}{a^4 c \sqrt{c+a^2 c x^2}}-\frac{2 x \tan ^{-1}(a x)}{a^3 c \sqrt{c+a^2 c x^2}}+\frac{\tan ^{-1}(a x)^2}{a^4 c \sqrt{c+a^2 c x^2}}+\frac{\sqrt{c+a^2 c x^2} \tan ^{-1}(a x)^2}{a^4 c^2}+\frac{4 i \sqrt{1+a^2 x^2} \tan ^{-1}(a x) \tan ^{-1}\left (\frac{\sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{a^4 c \sqrt{c+a^2 c x^2}}-\frac{2 i \sqrt{1+a^2 x^2} \text{Li}_2\left (-\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{a^4 c \sqrt{c+a^2 c x^2}}+\frac{2 i \sqrt{1+a^2 x^2} \text{Li}_2\left (\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{a^4 c \sqrt{c+a^2 c x^2}}\\ \end{align*}

Mathematica [A]  time = 0.841571, size = 209, normalized size = 0.69 \[ \frac{\sqrt{c \left (a^2 x^2+1\right )} \left (-\frac{4 i \text{PolyLog}\left (2,-i e^{i \tan ^{-1}(a x)}\right )}{\sqrt{a^2 x^2+1}}+\frac{4 i \text{PolyLog}\left (2,i e^{i \tan ^{-1}(a x)}\right )}{\sqrt{a^2 x^2+1}}-\frac{4 \tan ^{-1}(a x) \log \left (1-i e^{i \tan ^{-1}(a x)}\right )}{\sqrt{a^2 x^2+1}}+\frac{4 \tan ^{-1}(a x) \log \left (1+i e^{i \tan ^{-1}(a x)}\right )}{\sqrt{a^2 x^2+1}}+3 \tan ^{-1}(a x)^2-2 \tan ^{-1}(a x) \sin \left (2 \tan ^{-1}(a x)\right )+\tan ^{-1}(a x)^2 \cos \left (2 \tan ^{-1}(a x)\right )-2 \cos \left (2 \tan ^{-1}(a x)\right )-2\right )}{2 a^4 c^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^3*ArcTan[a*x]^2)/(c + a^2*c*x^2)^(3/2),x]

[Out]

(Sqrt[c*(1 + a^2*x^2)]*(-2 + 3*ArcTan[a*x]^2 - 2*Cos[2*ArcTan[a*x]] + ArcTan[a*x]^2*Cos[2*ArcTan[a*x]] - (4*Ar
cTan[a*x]*Log[1 - I*E^(I*ArcTan[a*x])])/Sqrt[1 + a^2*x^2] + (4*ArcTan[a*x]*Log[1 + I*E^(I*ArcTan[a*x])])/Sqrt[
1 + a^2*x^2] - ((4*I)*PolyLog[2, (-I)*E^(I*ArcTan[a*x])])/Sqrt[1 + a^2*x^2] + ((4*I)*PolyLog[2, I*E^(I*ArcTan[
a*x])])/Sqrt[1 + a^2*x^2] - 2*ArcTan[a*x]*Sin[2*ArcTan[a*x]]))/(2*a^4*c^2)

________________________________________________________________________________________

Maple [A]  time = 1., size = 294, normalized size = 1. \begin{align*}{\frac{ \left ( \left ( \arctan \left ( ax \right ) \right ) ^{2}-2+2\,i\arctan \left ( ax \right ) \right ) \left ( 1+iax \right ) }{ \left ( 2\,{a}^{2}{x}^{2}+2 \right ){a}^{4}{c}^{2}}\sqrt{c \left ( ax-i \right ) \left ( ax+i \right ) }}-{\frac{ \left ( -1+iax \right ) \left ( \left ( \arctan \left ( ax \right ) \right ) ^{2}-2-2\,i\arctan \left ( ax \right ) \right ) }{ \left ( 2\,{a}^{2}{x}^{2}+2 \right ){a}^{4}{c}^{2}}\sqrt{c \left ( ax-i \right ) \left ( ax+i \right ) }}+{\frac{ \left ( \arctan \left ( ax \right ) \right ) ^{2}}{{a}^{4}{c}^{2}}\sqrt{c \left ( ax-i \right ) \left ( ax+i \right ) }}-{\frac{2\,i}{{a}^{4}{c}^{2}} \left ( i\arctan \left ( ax \right ) \ln \left ( 1+{i \left ( 1+iax \right ){\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}} \right ) -i\arctan \left ( ax \right ) \ln \left ( 1-{i \left ( 1+iax \right ){\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}} \right ) +{\it dilog} \left ( 1+{i \left ( 1+iax \right ){\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}} \right ) -{\it dilog} \left ( 1-{i \left ( 1+iax \right ){\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}} \right ) \right ) \sqrt{c \left ( ax-i \right ) \left ( ax+i \right ) }{\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*arctan(a*x)^2/(a^2*c*x^2+c)^(3/2),x)

[Out]

1/2*(arctan(a*x)^2-2+2*I*arctan(a*x))*(1+I*a*x)*(c*(a*x-I)*(a*x+I))^(1/2)/(a^2*x^2+1)/a^4/c^2-1/2*(c*(a*x-I)*(
a*x+I))^(1/2)*(-1+I*a*x)*(arctan(a*x)^2-2-2*I*arctan(a*x))/(a^2*x^2+1)/a^4/c^2+arctan(a*x)^2*(c*(a*x-I)*(a*x+I
))^(1/2)/a^4/c^2-2*I*(I*arctan(a*x)*ln(1+I*(1+I*a*x)/(a^2*x^2+1)^(1/2))-I*arctan(a*x)*ln(1-I*(1+I*a*x)/(a^2*x^
2+1)^(1/2))+dilog(1+I*(1+I*a*x)/(a^2*x^2+1)^(1/2))-dilog(1-I*(1+I*a*x)/(a^2*x^2+1)^(1/2)))*(c*(a*x-I)*(a*x+I))
^(1/2)/(a^2*x^2+1)^(1/2)/a^4/c^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arctan(a*x)^2/(a^2*c*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{a^{2} c x^{2} + c} x^{3} \arctan \left (a x\right )^{2}}{a^{4} c^{2} x^{4} + 2 \, a^{2} c^{2} x^{2} + c^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arctan(a*x)^2/(a^2*c*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(a^2*c*x^2 + c)*x^3*arctan(a*x)^2/(a^4*c^2*x^4 + 2*a^2*c^2*x^2 + c^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3} \operatorname{atan}^{2}{\left (a x \right )}}{\left (c \left (a^{2} x^{2} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*atan(a*x)**2/(a**2*c*x**2+c)**(3/2),x)

[Out]

Integral(x**3*atan(a*x)**2/(c*(a**2*x**2 + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3} \arctan \left (a x\right )^{2}}{{\left (a^{2} c x^{2} + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arctan(a*x)^2/(a^2*c*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate(x^3*arctan(a*x)^2/(a^2*c*x^2 + c)^(3/2), x)